The explicit minimal resolution constructed from a Macaulay inverse system

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macaulay inverse systems revisited

Since its original publication in 1916 under the title ”The algebraic theory of modular systems”, the book by F.S. Macaulay has attracted a lot of scientists with a view towards pure matematics (D. Eisenbud,...) or applications to control theory (U. Oberst,...). However, a carefull examination of the quotations clearly shows that people had only a look at the first three chapters respectively d...

متن کامل

Multilevel Preconditioners Constructed From Inverse-Based ILUs

This paper analyzes dropping strategies in a multilevel incomplete LU decomposition context and presents a few of strategies for obtaining related ILUs with enhanced robustness. The analysis shows that the Incomplete LU factorization resulting from dropping small entries in Gaussian elimination produces a good preconditioner when the inverses of these factors have norms that are not too large. ...

متن کامل

Cohen-Macaulay $r$-partite graphs with minimal clique cover

‎In this paper‎, ‎we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay‎. ‎It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$‎, ‎then such a cover is unique‎.

متن کامل

cohen-macaulay $r$-partite graphs with minimal clique cover

‎in this paper‎, ‎we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is cohen-macaulay‎. ‎it is proved that if there exists a cover of an $r$-partite cohen-macaulay graph by disjoint cliques of size $r$‎, ‎then such a cover is unique‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2015

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2015.04.044